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A photonic delay line is used as a frequency discriminator to measure the phase
noise—hence the short-term frequency stability—of microwave oscillators. The
scheme is suitable for electronic and photonic oscillators, including the opto-
electronic oscillator, mode lock lasers, and other types of RF and microwave
pulsed optical sources. The approach is inherently suitable for a wide range of
frequency without reconfiguration, which is important for the measurement of
tunable oscillators. It is also insensitive to a moderate frequency drift without
the need for phase locking.
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1. Introduction

The ever increasing demand for precision measurements
in scientific and technological applications requires ultra-
low noise, highly spectrally pure, and highly stable
sources of reference signals. This is because phase, and
equivalently frequency and time, are the most precisely
measured physical quantities. Up until a decade ago,
virtually all high performance reference oscillators oper-
ated in the RF region of the spectrum, and any higher
frequency required multiplication steps that were cum-
bersome, and degraded the quality of the signal. In the
past decade, optical techniques have overcome this obsta-
cle, producing low noise sources for the millimeter wave
and microwave frequency regimes. Photonic oscillators1,2
and mode locked lasers3,4 produce low noise references
in the tens of GHz frequency domain, and advance many
applications ranging from tests of fundamental physical
laws, to optical A/D converts and radar. The advent of
the femtosecond optical comb5 has completed the miss-
ing link by extending the ability to measure and charac-
terize optical frequencies through a comparison with the
microwave sources.

As the quality of the reference signals have improved,
the need for measurement systems capable of precisely
characterizing them has also grown. Ultra-low noise mea-
surement systems are difficult to implement and use,
and the task of precise characterization of the noise of
high performance reference sources is mostly relegated
to metrological laboratories. This is because at the level
of performance of advanced standards, the measurement
system is required to operate at or near the fundamen-
tal noise limits. Every source of technical noise must
be carefully identified, characterized, eliminated, or re-
duced. Precise measurements also typically require ac-
cess to an ultra-low noise reference source, which is used
to compare with the oscillator being characterized. In

this conventional, heterodyne, approach the signals from
the oscillator under test is mixed with that of the refer-
ence in a mixer, and the output at dc (zero frequency) is
measured with a spectrum analyzer. The scheme requires
that the frequency of the oscillator under test be at the
same value as that of the high performance reference with
which it is being compared. This is an additional con-
straint for the development of low noise sources, which
may have a natural oscillating frequency different than
that of the reference.

Because of this, the homodyne technique for charac-
terization of the noise of the oscillator is also used. In
this approach, the signal from the source is split into two
branches, one of which is delayed for de-correlation be-
fore being mixed with the first branch. To achieve the
required noise de-correlation over the (Fourier) frequency
range of interest, the required delays are many microsec-
onds long, and difficult to achieve with conventional elec-
tronic techniques. Here, again, optical techniques can
provide new capabilities for overcoming this particular
barrier. The use of long fiber delays provides a low loss
and practical technique for use in homodyne schemes.
A particularly desirable feature of this approach is its
compatibility with optically generated microwave signals,
which usually have an optical output and can be easily
introduced into a fiber delay. Thus an effective scheme
can be implemented, which is accessible to most research
laboratories interested in the characterization of the noise
of high performance oscillators.

Despite its great utility, the optically based noise mea-
surement scheme is not widely known in the optics com-
munity. In this paper we aim at describing this approach,
and provide a detailed analysis of its features and its lim-
itations. We are interested in reference signal sources
that have ultra-high spectral purity, and short term sta-
bility. Our approach is not suitable for measuring long
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term stability, as needed, for example, for atomic clocks
which must be characterized in the time domain with a
completely different measurement system.

Since the subject of RF and microwave phase noise
measurement is not necessarily a familiar one in the op-
tics community, we begin our presentation with a discus-
sion of the salient features of phase noise, which is also
required for characterizing the time domain stability of
reference sources. We will also present a description of
the heterodyne phase noise measurement method to be
compared with the homodyne technique. We provide a
detailed analysis of the photonic delay line, and discuss
the contributions of all sources of noise associated with
various components in the measurement system. Finally,
we apply the optical delay line to characterize the phase
noise of a photonic oscillator that has a performance
higher than commercial measurement instruments, such
as spectrum analyzers, and thus requires a high perfor-
mance test system.

2. Overview

Phase noise is described in terms of power spectral den-
sity Sϕ(f) of random phase fluctuations ϕ(t), as a func-
tion of Fourier frequency f . This refers to the signal
representation

v(t) = V0 [1 + α(t)] cos [2πν0t + ϕ(t)] . (1)

Industry reports and specifications often use L(f), which
is defined as L(f) = 1

2Sϕ(f). The amplitude noise α(t)
and its spectrum are also of interest in many cases. An
alternate quantity used to describe the frequency sta-
bility of oscillators, and closely related to Sϕ(f), is the
two-sample (Allan) variance

σ2
y(τ) =

1
2

(
yk+1 − yk

)2
, (2)

where yk and yk+1 are the fractional frequency fluctu-
ation y(t) = 1

2πν0

d
dt ϕ(t) averaged on contiguous time

intervals of duration τ , which is the measurement time.
A model that is found useful to describe the observed

phase noise of oscillators is the power-law dependence of
phase noise on the Fourier frequency

Sϕ(f) =
∑

i≤0

bif
i , (3)

which includes the negative powers of f including f0

(white phase noise) to at least f−4 (random walk of fre-
quency), depending on the oscillator and on the obser-
vation time. Figure 1 shows the phase noise spectrum of
an oscillator, and the Definitions of main terms of (3).
Similar models also apply to the spectrum of frequency
fluctuation Sy(f) and to the Allan variance. Detailed
discussions of phase noise and short-term stability are
available in several references, amongst which we prefer
the review paper6 of Rutman, the CCIR report7 580-3,
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Figure 1. Oscillator phase noise.
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Figure 2. Usual schemes for the measurement of Sϕ(f).

a book edited by Kroupa8, and the chapter 2 of Ref. 9.
A standard10 of the IEEE is also available.

Among the processes of Fig. 1, we are mainly inter-
ested in the flicker of frequency, which has a slope of f−3

in the log-log plot of Sϕ(f), and a constant variance, in-
dependent of τ .

For technical reasons, the direct measurement of Sϕ(f)
by means of a fast Fourier transform (FFT) analyzer
is preferable for short-term fluctuations, while the time-
domain techniques for the direct measurement of σ2

y(τ)
are more suitable for slower fluctuations. The breakpoint
is about f = 1 Hz, with an overlapping of 1–2 decades.
As we are interested in short-term stability, it is therefore
natural to explore the frequency-domain methods, even
if the final result may be reported as σy(τ).

The basic method for the measurement of phase noise
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in oscillators is shown in Fig. 2A. The double balanced
mixer, saturated at both inputs, works as a phase-to-
voltage converter. The gain is typically in the range of
100–500 mV/rad, depending on the device and on power.
A power of 5–10 mW is usually needed to saturate the
mixer. The reference oscillator is phase-locked to the os-
cillator under test. When needed, a synthesizer makes
the nominal frequencies equal. Whereas one may be in-
clined to use a loose loop and to measure phase noise
at frequencies higher than the cutoff, a tight loop is of-
ten preferable because in this case the noise spectrum
is multiplied by f2. Thus, for example, the 1/f3 low-
frequency spectrum (flicker of frequency) turns into 1/f
(flicker of phase). As a result, the burden on the dynamic
range of the FFT analyzer is strongly reduced. On the
other hand, the tight loop relies upon the knowledge of
the loop transfer function, which must be measured and
accounted for in order to get Sϕ(f).

Two experimental problems are inherent in the scheme
of Fig. 2 A. The first is that a synthesizer is needed if the
oscillator under test does not oscillate at a convenient fre-
quency. The needed resolution is often obtained at the
expense of short-term stability, which limits the measure-
ment. The second is that microwave leakage, unavoidable
in some cases, artificially reduces the phase noise and
makes the measurement results incorrect. In a different
context, the same mechanism is exploited to reduce the
oscillator noise by injection locking11,12.

The beat method shown in Fig. 2B solves the above
problems. The main point is that there is some freedom
in choosing the reference, which can be an oscillator with
a frequency not far from ν0, or a lower frequency oscil-
lator followed by a frequency multiplier. In both cases,
the short-term stability limitation of the microwave syn-
thesizer is removed. The phase noise measurement takes
place at the beat frequency νb in the high frequency (HF)
region, where low noise synthesizers are available. Phase
locking may be used with the reference or the auxiliary
synthesizer, allowing more flexibility. In practice, νb is
chosen to prevent any leakage from affecting the results.
The scheme of Fig. 2 B offers the highest sensitivity. Yet
the problem with it is that a suitable low-noise refer-
ence must be available, at a frequency νr not far from
ν0, say within 50 MHz. This can be a severe constraint
if one plans to measure oscillators with natural outputs
in the GHz range. Then, in some cases the loop gain is
spread in a wide range. In short, this approach may be
the only possible option for the most demanding appli-
cations, such as the case of the whispering gallery mode
oscillators13–15, but is difficult to design and to operate
as a general purpose instrument.

We now turn our attention to the single-oscillator (ho-
modyne) method, in which a frequency discriminator acts
as the reference with which the oscillator under test is
compared. Systems based on this technique have been in
use since the early time of the oscillator metrology16–18,
and yet are much older; Pound used a discriminator to
stabilize an oscillator19. A resonator of quality factor Q
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Figure 3. Delay-line homodyne method.

is a discriminator that turns frequency fluctuations δν
into phase fluctuations ϕ = δν/2νQ. For our purpose, a
resonator tunable over a wide range would be necessary.
Yet, the variable resonators do not have a sufficiently
high stability and Q for the measurement of low-noise
oscillators, and no significant progress has been made in
this area since the early publications of references 16–18.
A powerful alternative at our disposal is the photonic de-
lay line, which will be analyzed in the following Sections.

In this homodyne approach, the discriminator gain is
proportional to the delay, but an electrical delay line is
not suitable at microwave frequencies because of high at-
tenuation. For example, a UT-141 semirigid cable (3.5
mm diameter, PTFE insulated) has an insertion loss of
some 0.8 dB/m at 10 GHz, which limits the achievable
delay to about 100 ns (25 m). Even at lower frequencies,
where a longer cable has a tolerable attenuation, it was
necessary to use a correlation system with two indepen-
dent delay lines and phase detectors20,21 to overcome the
high background noise that results from the short delay.
Needless to say, the dual delay line system is cumber-
some, complicated, and difficult to use.

Photonic technology offers a solution, since an optical
fiber typically has a refractive index n = 1.45 and the
attenuation is as low as 0.2 dB/km at the wavelength
λ = 1.55 µm. Therefore, a 10 km coil exhibits a delay of
50 µs, in a reasonable size and weight (1×10−3 m3 and 1
kg). A further advantage of the optical fiber, as compared
to electrical cables, is that energy is perfectly confined.
Thus, leakage, shielding and grounding are no longer a
problem. Finally, the temperature stability of the index
of refraction, thus of the delay, is dn/dT ' 6.85×10−6/K,
which is more than one order of magnitude better than
that of low thermal drift electrical cables.
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3. Delay Line Theory

Figure 3 shows the principle of the delay-line measure-
ment, and its equivalent in the Laplace transform do-
main. By inspection of Fig. 3,

Φo(s) = Hϕ(s)Φi(s) , (4)

where Hϕ(s) = 1−e−sτ . Turning the Laplace transforms
into power spectra, (4) becomes

Sϕo(f) = |Hϕ(jf)|2Sϕi(f) , (5)

where

|Hϕ(jf)|2 = 4 sin2(πfτ) . (6)

The spectrum of frequency fluctuation Sy(f) is related
to Sϕ(f) through

Sy(f) =
f2

ν2
0

Sϕi(f) . (7)

Combining (5) and (7), we get

Sy(f) = |Hy(jf)|2Sϕi(f) , (8)

where

|Hy(jf)|2 =
4ν2

0

f2
sin2(πfτ) . (9)

Eq. (5) is used to derive the phase noise Sϕi(f) of the os-
cillator under test. Alternatively, (7) is used to derive the
frequency noise Sy(f). We prefer Sϕ(f), independently
of how the final results will be expressed, because the
background noise of the instrument appears as Sϕ(f).

Figure 4 shows the transfer functions |Hϕ(jf)|2 and
|Hy(jf)|2 for ν0 = 10 GHz and τd = 10 µs (2 km delay
line), which is typical of our experiments. For f → 0, it
holds |Hϕ(jf)|2 ∼ f2. Fortunately, high slope processes
such as flicker of frequency dominate in this region (see
Fig. 1), which compensates |Hϕ(jf)|2. The phase noise
measurement is therefore possible, providing the delay
τd can be appropriately chosen. |Hϕ(jf)|2, as well as
|Hy(jf)|2, has a series of zeros at f = n

τd
, with integer

n ≥ 1. The experimental results are not useful in the
vicinity of these zeros. At the beginning of our experi-
ments we hoped to reconstruct the spectrum beyond the
first zero at f = 1

τd
by exploiting the maxima at f = 2i+1

2τd

(integer i ≥ 1). This turned out to be difficult. One prob-
lem is the resolution of the FFT analyzer, as the density
of zeros increases on a logarithmic scale. Another prob-
lem is the presence of stray signals in the measured spec-
trum, which make unreliable the few data around the
maxima. The practical limit is about f = 0.95

τd
, where

|Hϕ(jf)|2 = −16 dB, and at most some points around
f = 3

2τd
between the first and second zeros.
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Figure 4. Transfer functions |Hϕ(jf)|2 and |Hy(jf)|2
plotted for ν0 = 10 GHz and τd = 10 µs.

4. Sources of Noise

The basic block for photonic phase noise measurements is
shown in Fig. 3 A. In normal operation the random phase
ϕ(t) results from the fluctuations of the input frequency.
In this section we analyze the sources of noise of the
block, since ϕo(t) is acquired from the noise of electrical
and optical components.

The power Pλ(t) of the optical signal is sinusoidally
modulated at the microwave angular frequency ωµ with
a modulation index m

Pλ(t) = Pλ (1 + m cos ωµt) . (10)

Here, we use the subscripts λ and µ for ‘light’ and ‘mi-
crowave’, and the overline (as in P ) for the average.
Eq. (10) is similar to the traditional AM of radio broad-
casting, but optical power is modulated instead of RF
voltage. In the presence of a distorted (nonlinear) modu-
lation, we take the fundamental of the modulating signal,
at ωµ.

The detector photocurrent is

i(t) =
qη

hνλ
Pλ (1 + m cos ωµt) , (11)

where q = 1.602×10−19 C is the electron charge, η
the quantum efficiency of the photodetector, and h =
6.626×10−34 J/Hz the Planck constant. Only the ac
term m cosωµt of (11) contributes to the microwave sig-
nal. The microwave power fed into the load resistance
R0 is Pµ = R0ı2ac, hence

Pµ =
1
2
m2R0

(
qη

hνλ

)2

P
2

λ . (12)

A. White Noise

The discrete nature of photons leads to the shot noise
of power spectral density Ns = 2qiR0 [W/Hz] at the
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detector output. By virtue of (11),

Ns =
q2η

hνλ
PλR0 (13)

In addition, there is the equivalent input noise of the
amplifier loaded by R0, whose power spectrum is

Nt = FkBT0 , (14)

where F is the noise figure of the amplifier, kB =
1.38×10−23 J/K the Boltzmann constant, and T0 the
temperature. The white noise Ns +Nt turns into a noise
floor Sϕ0 = (Ns +Nt)/Pµ of Sϕ(f). Using (12), (13) and
(14), the floor is

Sϕ0 =
2

m2

[
2
hνλ

η

1
Pλ

+
FkBT0

R0

(
hνλ

qη

)2 (
1

Pλ

)2
]

(15)
Eq. (15) holds for one arm of Fig. 3. As there are two
independent arms, noise power is multiplied by two. In
addition, it is convenient to redefine Pλ as the total input
power, half of which goes to the detector input. Account-
ing for the two arms and changing Pλ → Pλ/2, the phase
noise floor of the entire block is

Sϕ0 =
16
m2

[
hνλ

η

1
Pλ

+
FkBT0

R0

(
hνλ

qη

)2 (
1

Pλ

)2
]

(16)

Interestingly, the noise floor is proportional to (Pλ)−2 at
low power, and to (Pλ)−1 above the threshold power

Pλ,t =
FkBT0

R0

hνλ

q2η
(17)

For example, taking νλ = 193.4 THz (wavelength λ =
1.55 µm), η = 0.6, F = 1 (noise-free amplifier), and
m = 1, we get a threshold power Pλ,t = 689 µW, set-
ting the noise floor at Sϕ0 = 9.9×10−15 rad2/Hz (−140
dBrad2/Hz).

When the mixer is used as a phase-to-voltage con-
verter, saturated at both inputs, its noise is chiefly the
noise of the output amplifier divided by the conver-
sion gain kϕ. Assuming that the amplifier noise is 1.6
nV/

√
Hz (our low-flicker amplifiers, input-terminated to

50 Ω) and that kϕ = 0.1 V/rad (conservative with re-
spect to Pµ), the mixer noise is about 2.5×10−16 rad2/Hz
(−156 dBrad2/Hz). In practice, the mixer noise can
hardly approach the noise of the microwave amplifier be-
cause of the gain of the latter. The microwave gain, hid-
den in (16), is not a free parameter. Its permitted range
derives from the need of operating the mixer in the sat-
uration region, below the maximum power.

Figure 5 shows the noise floor Sϕ0 as a function of the
total optical power for some reference cases.

B. Modulation Index

For a given CW laser power, the condition of maximum
microwave power at the angular frequency ωµ is that of a

mixer & postdetect. ampli

§  F=1, m=1
$  F=2, m=1
#  F=2, m=0.3
£  F=2, m=0.1

§
$

#
£

F=2

F=1

power
treshold

1e–16

1e–15
1e–14
1e–13
1e–12
1e–11
1e–10
1e–09
1e–08
1e–07
1e–06
1e–05
.1e–3

1e–06 1e–05 .1e–3 .1e–2 .1e–1 .1
P

10−4

10−6

10−8

10−10

10−12

10−14

10−16

10−6 10−110−310−410−510−7 10−2

rad2/Hzϕ0S

optical power, W

,

Figure 5. Noise floor as a function of the optical power.
The treshld power depends on the noise figure F .

square-wave of the same frequency that switches symmet-
rically between 0 and 2Pλ. This is equivalent to replacing
the term m cos ωµ in Eq. (10) with a unity square-wave
that flips between ±1. In our case the unity square-
wave can be expanded in Fourier series truncated after
the first term because the higher harmonics (ω = nωµ,
with integer n ≥ 2) are not in the pass band of the mi-
crowave chain. Thus, the unity square-wave is replaced
with sinusoid of angular frequency ωµ and amplitude
4/π. Therefore the square-wave modulation is equiva-
lent to a sinusoidal modulation with a modulation index
m = 4/π ' 1.273. m > 1 is no contradiction with the
traditional modulation theory, it only means that the
harmonic distortion is present.

A more interesting case is that of the electro-optic
modulator (EOM), which is used in virtually all photonic
oscillators, and as the modulator in the experiments de-
scribed below (section 6). The EOM transmission, as a
function of the driving voltage v(t), is

T =
1
2

+
1
2

sin
πv

Vπ
(18)

with Vπ the half-wave voltage of the modulator. When
the driving signal is v(t) = Vp cosωµt, the transmission
becomes

T (t) =
1
2

[
1 + 2J1

(
πVp

Vπ

)
cos ωµt + . . .

]
, (19)

where J1 is the first-order Bessel function of the first kind.
Eq. (19) derives from 0-th term of the series expansion

sin(z cos θ) = 2
∞∑

k=0

(−1)kJ2k+1 cos[(2k + 1)θ] . (20)

The neglected terms “. . . ” of (19) are higher harmonics,
of angular frequency nωµ, integer n ≥ 2. They also en-
sure 0 ≤ T ≤ 1. Eq. (19) has the same form of Eq. (10),
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hence the modulation index is

m = 2J1

(
πVp

Vπ

)
. (21)

The maximum is m ' 1.164, which occurs at Vp =
0.586 Vπ.

In practice, the microwave power and the dc bias of
the EOM are sometimes difficult to set and maintain at
the maximum modulation index. This is due to the pos-
sibility for bias drift, and to the thermal sensitivity of the
lithium niobate. Hence, we take m = 1 as the maximum,
being aware that this may be somewhat optimistic.

C. Flicker Noise

The residual flicker noise derives from a number of causes
for which there is no satisfactory theory. Nonetheless,
based on experience and experimental facts, a model may
be developed.

1. Amplifier

Phase flickering of amplifiers, as well as amplitude flicker-
ing, results from noise at near-dc frequency up-converted
by the device nonlinearity. This is made evident by
the simple observation that in the absence of a car-
rier the microwave spectrum at the amplifier output is
white, i.e. constant over the entire bandwidth. Whereas
a general theory does not exist, several experimental
observations22–24 suggest that different amplifiers based
on a given technology tend to have about the same b−1

coefficient in (3), and that b−1 is nearly constant in a
wide range of carrier frequency and power. The typi-
cal phase flickering of a “good” microwave amplifier op-
erated well below the 1 dB compression point P1 dB is
between b−1 = 1×10−11 and b−1 = 2×10−11. For exam-
ple, b−1 of a commercial amplifier (Microwave Solutions
MSH6545502) that we measured at 9.9 GHz is between
1.25×10−11 and 2×10−11 from 300 µW to 80 mW of out-
put power. For this device, the 1 dB compression power
is 160 mW.

In principle, the amplifier 1/f noise can be reduced
by carrier suppression methods, in which only the noise
sidebands are amplified. The difficulty of not having
a clean reference with sufficient microwave power to
pump the mixer has been recently solved25. Incorpo-
rating carrier suppression, which is well developed in the
microwave domain26, in a photonic oscillator has been
demonstrated27, but it is still a challenging task, and we
are currently studying it further.

2. Mixer Noise

There are a number of microwave double-balanced mix-
ers available that exhibit sufficiently low residual flicker.
A conservative value for the flicker coefficient is b−1 <
10−12. This makes the mixer noise negligible as com-
pared to the amplifier. These low-noise mixers are avail-
able as commercial parts, without the need of individual
selection. On the other hand, the double-balanced mixer
needs to be saturated at both inputs in order to work

properly as a phase detector. The power range is of a
factor 10 centered around (±5 dB) an optimum power of
5–10 mW. At both sides out of that range, b−1 increases.
Furthermore, at lower power the conversion gain (0.1–
0.5 V/rad) drops suddenly. This is a consequence of the
exponential i(v) characteristics of the internal Schottky
diodes.

3. Contamination from Amplitude Noise

Mixers are sensitive to the amplitude noise of the in-
put signal. The output voltage v takes the form v =
kϕϕ + kαα, where α(t) is the amplitude fluctuation de-
fined by Eq. (1). This results from the imperfect cancel-
lation of the voltage across the internal diodes, due to
diode differences and to the asymmetry of power split-
ting. In some cases we have measured kϕ/kα as low as 5,
while values of 10–20 are common. In spite of this, am-
plitude noise seldom represents a problem in microwave
measurements, and at most turns into a small error in
the measurement of Sϕ(f). Yet, in photonic systems
the contamination from amplitude noise can be a seri-
ous problem because of the power fluctuation of some
lasers and laser amplifiers, chiefly the EDFA. In the
radiofrequency and microwave domain, Brendel28, and
later Gibel29, suggest that the mixer can be operated at
a point of zero sensitivity to amplitude noise. In practice
this point occurs at a few degrees off the perfect quadra-
ture, where the residual noise and the conversion gain of
the mixer are not affected. That optimal point depends
on the specific mixer sample, and on amplitude and fre-
quency, for it must be determined experimentally in each
case. Unfortunately, the Brendel offset method can not
be used when a discriminator is inserted in one arm. This
occurs because the null of amplitude sensitivity results
from the equilibrium between equal and opposite sensi-
tivities at the two inputs. The discriminator de-correlates
the signals, hence the effect of a fluctuation of the input
amplitude appears at the output twice, immediately and
after the discriminator delay.

4. Noise of the Photonic Channel

The measurement of 1/f fluctuations in microwave pho-
todetectors is a challenging problem, and has been re-
ported previously only in a single instance30. In order to
avoid the problem, we measured the noise of a photonic
microwave channel, which consists of 1.55 µm laser diode
(UTP CW-DFB-1550) followed by an EDFA (NuPho-
ton NP2000GB-23B-G23-NO-58-FPIS), an EOM (Lu-
cent X2624C) and a photodetector (Discovery Semicon-
ductor DSC30-1K, and Lasertron QDMH-3), the same
components used in the final experiments. The measure-
ment was carried out with a simplified version of the
interferometric technique described in Ref. 26, measur-
ing the fluctuation between the microwave input of the
EOM and the microwave output of the photodetector at
the frequency of 9.9 GHz. We swept the detection angle
γ, without calibrating it. In this condition, the measured
quantity is ϕ sin γ + α cos γ, with arbitrary origin of γ.
With a microwave power Pµ = 6.3 µW (−22 dBm), the



7

−160

−140

−120

−100

−80

−60

−40

1M100k10k 10M1k100101

S
(f

),
dB

ra
d

ϕ

=−23dBmµ

Fourier frequency, Hz

=−39dBmµ

ampli

ampli

OSA

OSA
OSA: 5 MHz OCXO Oscilloquartz 8607 

AG

AG

AG

AG:  synth. Agilent E8247C

WE

Ultra Low Noise Plus
WE:  100 MHz OCXO Wenzel

WE

WE

WG

WG

WG:  9 GHz sapphire whispering gallery
Poseidon Shoebox

AN

AN

AN

AN:  synth. Anritsu MG3690A

mixer

mixer

ampli+shot, P

ampli+shot, P 

amplifier pair + shot

sµ
100 sµ

10
sµ1

2 /
H

z
20 km,

2 km,
200 m,

photonic homodyne

(m=1, η=0.6)P =−2.3 dBm,
ampli pair, P =−23dBm, F=2µ

λ

F=2

F=2

Figure 6. Comparison between phase noise measurement methods. The white noise of the amplifier pair also includes
shot noise, calculated from the optical power that gives Pµ with m = 1 and η = 0.6.

1 Hz flicker noise was between 7.4×10−13 and 5.9×10−11

depending on the detection angle γ. Based on physical
insight, we ascribe the maximum to amplitude noise and
the minimum to phase noise, that is, 7.4×10−13 rad2/Hz
(−121.3 dBrad2/Hz. These results apply to the measure-
ment of a microwave oscillator, which includes the EOM
and the detector (see Fig. 7), and sets the upper bound of
the photodetector noise in the measurement of an optical
signal. Finally, the flicker noise of the modulator-detector
pair is lower by a factor 30 (15 dB) than the noise of the
amplifier, thus it does not deserve more attention here.

D. Comparison of Method

Figure 6 compares the phase noise spectrum of some
selected low-noise commercially-available sources to the
noise of a photonic homodyne instrument. All spectra
refer to the carrier frequency of 10 GHz, and to the
best low-noise available option. In the case of fixed-
frequency oscillators (quartz and sapphire), the spectra
are converted to 10 GHz using the intrinsic property of
frequency multiplication by a rational number z, that
Sϕ out = z2Sϕ in.

A synthesizer can be directly used as the reference in
Fig. 2. In this case, the phase noise of the synthesizer
sets the measurement limit. Phase noise can be further
reduced in the lower part of the spectrum by locking the
synthesizer to an external source. The cutoff frequency
below which locking is effective depends on the synthe-
sizer inside.

A quartz oscillator followed by a frequency multiplier
can be used as the reference, using the scheme of Fig. 2B.
Experience suggests choosing from 5 MHz and 100 MHz
oscillators. The 5 MHz oscillator offer the lowest noise at

low f because of the higher Q and of the superior stabil-
ity of the 5 MHz resonator as compared to the 100 MHz
ones. In some cases σy(τ) can be lower than 10−13 for
τ ≈ 1 s. On the other hand, white noise is relatively high
because the white noise of the internal amplifier is raised
by the high order of frequency multiplication (2×103)
required to attain 10 GHz. 100 MHz oscillators bene-
fit from the lower order of needed multiplication (102),
and from the lower white noise that results from exciting
the resonator at higher power. Yet, the excitation power
further reduces the low-frequency stability. Even lower
noise can be obtained with a whispering gallery mode
reference oscillator, which benefits from the high Q of
the resonator. Yet, in that case an oscillator close to the
frequency of the source under test is necessary.

The noise limit of the delay-line measurements orig-
inates from the noise of its constituent components,
chiefly the amplifier pair, converted into input phase
noise using Eq. (5) and (6). The white noise of the ampli-
fier pair also include the shot noise. The latter is obtained
by deriving Pλ from Pµ. Eq. (12) is used, with m = 1
and η = 0.6. Three cases are considered, in which the
line length is 20 km, 2 km, and 200 m. The upper fre-
quency limit comes from fτ = 0.95, where Eq. (5) yields
a correction of 16 dB. Between f = 0.95/τ and f = 1/τ
the output voltage spectrum goes abruptly to zero, where
no measurement is possible.
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5. Measurement of Delay-Line Oscillators

The background noise of the photonic homodyne instru-
ment (Fig. 3 A), for f ¿ 1/2πτd is approximated by

Sϕi(f) =
(

1
2πτd

)2 1
f2

Sϕo(f) , (22)

where Sϕo(f) is the overall phase noise of the optical and
electrical part, chiefly the amplifier noise dominant at low
f . Eq. (22) is (5) inverted and approximated for low f .

Let us consider a delay-line oscillator at the frequency
ν0. Its phase noise is given by the Leeson formula31

Sϕl(f) =
[
1 +

ν2
0

4Q2

1
f2

]
Sϕa(f) , (23)

where Sϕa(f) is the phase noise of the sustaining am-
plifier, and more generally the equivalent phase noise of
the electronics in the loop. Taking Q = πν0τ

′
d as the

equivalent merit factor of the delay line that is used as
the resonator, and dropping the term “1+” in the square
brackets, negligible at low f , (23) becomes

Sϕl(f) =
(

1
2πτ ′d

)2 1
f2

Sϕa(f) . (24)

Eq. (24) is formally identical to (22). Hence, at first
glance one may believe that the background noise of the
instrument is the same as the oscillator noise [Sϕi(f) =
Sϕl(f)] if the same key components are used. This means
τd = τ ′d for the delay line, and the same phase noise for
the amplifier. Yet, the oscillator makes use of one am-
plifier, while the instrument (Fig. 3A) needs two ampli-
fiers. Thus, the instrument must have either a superior
amplifier technology, or a longer delay line. Of course,
a longer line limits the maximum f . On the other hand
the design of the instrument, compared to the design of
an oscillator, allows more freedom in choosing the most
appropriate working point of all parts. Therefore, it is
possible to successfully design an instrument based on
the same (or similar) delay and amplifier of the oscillator
to be measured.

6. Experimental Results

Figure 7 shows the complete measurement scheme. It
makes possible the measurement of photonic oscillators,
and of traditional microwave oscillators by modulating
the internal 1.55 µm optical source. While phase lock-
ing is impossible, the oscillator under test can still be
frequency-locked to the discriminator. The delay line is
a Coreguide SMF28 optical fiber that exhibits an attenu-
ation of 0.2 dB/km and a refractive index of 1.45. Using
a 2 km fiber, the delay is τd = 9.67 µs. Thus, the first
null of |Hϕ(f)|2 occurs at f = 103.4 kHz. The amplifier
noise figure F is of about 2.5 (4 dB), which also account
for the losses in the detector-amplifier path.

The first experiment is the measurement of a 9.9 GHz
microwave source that consists of a 100 MHz quartz oscil-
lator (Wenzel CO233 VFW) followed by a ×99 frequency
multiplier (MATS PLX32-18). The optical power Pλ was
set to 1.7 mW, and the modulation index m was close to
1. Under these conditions, Eq. (16) predicts a noise floor
of 4×10−15 rad2/Hz (−144 dBrad2/Hz). Yet, Pλ and
m tend to drift during the experiment because removing
the connectors and reconfiguring the circuit takes some
time. This instability, due to microwave induced thermal
effects in the EOM, makes the prediction of (16) rather
optimistic, by an estimated factor of about two.

Figure 8 shows the results of the first experiment. Set-
ting τd = 0 (the delay line is bypassed) we get the
curve A, which is the residual noise of the instrument
referred at the mixer input. The left part fits Sϕ(f) =
4×10−11f−1 (−104 dBrad2/Hz at f = 1 Hz). This is
the phase flicker of the amplifiers. Curve A has a bump
at 3 kHz and also at 30 kHz, which hides the white noise
floor predicted by (16). This bump is ascribed to the
EDFA. Curve B shows the residual noise referred to the
oscillator input, which is the instrument limit in the final
measurement. It is derived from curve A using Eq. (5).
The left part of curve B, from 10 Hz to some 2 kHz, is a
frequency flicker of coefficient b−3 = 1.08×10−2. Curve
C is the phase noise of the oscillator, measured with the
delay line. This result is fitted by the power-law

Sϕ(f) =
1.1×10−2

f3
+

3×10−4

f2
+ 7.7×10−12 (25)
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Figure 8. Measurement of a multiplied quartz oscillator.

Figure 9. Measurement of the multiplied quartz oscilla-
tor of Fig. 8, reproduced with a different experimental
configuration.

(b−3 = 1.08×10−2 = −7.7 dBrad2/Hz, b−2 =
3×10−4 = −35.2 dBrad2/Hz, b0 = 7.7×10−12 = −111.2
dBrad2/Hz). Flicker and white frequency noise originate
in the quartz oscillator, while the white phase noise may
be due to the oscillator or to the multiplier. The Allan
deviation σy(τ), calculated with the conversion formulae
available in the References 6–10, and discarding the white
phase noise, is σy = 1.25×10−11 for the background noise
of the instrument, and

σy(τ) = 4.9×10−11 +
1.24×10−12

√
τ

(26)

for the oscillator under test.
Figure 9 gives an idea of the reproducibility of our
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Figure 10. Measurement of a photonic oscillator.

method. This figure refers to the same microwave source
of Fig. 8, measured some 6 months later by a different
operator after changing some relevant components. The
EOM is now a JDS Uniphase MZ-150-120-T-1-1-C2-I2-
O2. The laser diode is replaced with a more powerful one
(FITEL FOL 15DCWB-A81-19210-B), for the EDFA is
no longer necessary. The optical power is Pλ = 1.9 mW,
with a modulation index m = 0.53. Curves A, B, and
C have the same meaning as in Fig. 8. The bumps at
3 kHz and 30 kHz are now disappeared form curves A
and B, while the flicker limit is almost unchanged. After
a minimum of smoothing, the oscillator noise (curve C)
overlaps to the previous measurement within 0.5 dB.

The second experiment is the measurement of a 10.05
GHz photonic oscillator based on a 4 km optical fiber.
The 1.55 µm optical output had to be amplified from
the power of 9.5 µW to 1.7 mW with the EDFA. Fig-
ure 10 shows the results. Plots A, B, and C have the
same meaning and are measured in the same way as be-
fore. Curve A fits the 1/f line only in the frequency
range from 40 Hz to less than 1 kHz, and increases be-
low 40 Hz. The residual flicker is some 5 times (7 dB)
higher than in the previous case. We ascribe this other-
wise unexplained phenomenon to the amplitude noise of
the oscillator, taken in by the mixer. Between 20 Hz and
10 kHz, plot C (oscillator noise) is fitted by the model

Sϕ(f) =
8×10−1

f3
+

1.2×10−3

f2
(27)

(b−3 = 0.8 = −1 dBrad2/Hz, b−2 = 1.2×10−3 =
−29.2 dBrad2/Hz), which reveals the presence of flicker
and white frequency noise. Below some 20 Hz, the curve
C is not representative of the oscillator phase noise be-
cause it is raised by the background noise. Converting
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the flicker and the white frequency noise into Allan devi-
ation, we get

σy(τ) = 1×10−10 +
2.4×10−12

√
τ

. (28)

Finally, we remark that by using a 2 km delay line it
has been possible to measure the noise of an oscillator
based on a 4 km delay line, making use of similar ap-
proach and parts. This supports the conclusion of Sec. 5
that in practice the background noise of the instrument
can often be made lower than the oscillator noise, if sim-
ilar parts are used.

7. Final Remarks

The phase noise measurement method proposed in this
paper features simplicity, straightforward implementa-
tion, and great flexibility. It is suitable for a wide range
of carrier frequency (some 2 octaves, depending on the
microwave mixer and amplifiers), it accepts either mi-
crowave or modulated optical input, and it does not re-
quire phase locking. Additionally, the presence of the
optical channel enables EMI isolation, ground isolation,
and provides the ultimate shielding. Sensitivity, which is
not the main virtue of this method, is indeed high in the
102–106 Hz region, depending on the delay used in the
instrument. For example, using a 20 km optical fiber (see
Fig. 6) the background noise calculated in the 102–103 Hz
region is 20 dB lower than the phase noise of microwave
synthesizers, and only 5 dB higher than that of the best
commercial whispering gallery mode oscillator.
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ence, (San José, CA), pp. 263–264, May 23-25 1998.

31. D. B. Leeson, “A simple model of feed back oscil-
lator noise spectrum,” Proceedings IEEE, vol. 54,
pp. 329–330, Feb. 1966.


